
Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Problem Set 3 (Solutions by Joey Heerens)

Problem 1 Let D(n) be the number of derangements in Sn

1. Prove that D(n) = (n− 1)(D(n− 1) +D(n− 2)).

2. Deduce that D(n) = nD(n− 1) + (−1)n.

Solution. Let Dn be the set of derangements of [n]. Note that for any permutation
π ∈ Dn, the element 1 can not be in a self cycle, so there are n−1 choices for π(1) = k.
There are two cases we now consider for π(k). The first is if π(k) = 1, in which we
have to arrange the other n − 2 elements such that for no i is π(i) = i. This is easily
equivalent to D(n− 2).

The other case is if π(k) 6= 1. Let the set of derangements with π(π(1)) 6= 1 be
denoted An. We claim there is a bijection f : An → Dn−1. For each π ∈ An, we
transform π into a π′ ∈ Dn−1 by letting π′(1) = ` where π(k) = `, and ignoring the
element k in π′. This gives us n− 1 elements that must not be in self-cycles, and this
process is easily reversible. Therefore, f is a bijection.

We have shown that D(n) = (n−1)D(n−1)+(n−1)D(n−2), proving part 1. Now,
part 2 can be shown through induction. D(1) = 0 and D(2) = 1, so the base case holds.
Assume that the hypothesis is true for some k = n. Then, D(k+1) = k(D(k)+D(k−1))
from part 1. Further,

D(k+1)−(k+1)D(k) = kD(k−1)−D(k) = kD(k−1)−kD(k−1)−(−1)k = (−1)k+1

from the induction hypothesis. This means D(k + 1) = (k + 1)D(k) + (−1)k+1, so the
induction holds and we are done. �

Problem 2 For each n ∈ N0, let Cn be the n-th Catalan number and set an = nCn.
Find an explicit formula for the generating function of (an)n≥0.

Solution. Recall from lecture that the generating function for (Cn)n≥0 is 1−
√
1−4x
2x

.
Further, if C(x) is the generating function for (Cn)n≥0, then

∞∑
n=0

anx
n =

∞∑
n=0

nCnx
n = x

∞∑
n=0

nCnx
n−1 = xC ′(x).

From quotient rule, the derivative of C(x) is

−2x−
√

1− 4x+ 1

2x2
√

1− 4x
.

Thus, the generating function is −2x−
√
1−4x+1

2x
√
1−4x . �
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Problem 3 Find an explicit formula for the number of solutions (x, y, z) ∈ N3
0 of the

equation x+ y + z = n satisfying that x is odd, y > 2, and z < 5.

Solution. Let the number of solutions to x+ y+ z = n for (x, y, z) ∈ N3
0 be an. If A(x)

is the generating function for (an)n≥0, then

A(x) = (x+ x3 + ...)(x3 + x4 + ...)(1 + x+ x2 + x3 + x4) =
x

1− x2
· x3

1− x
· 1− x5

1− x
,

where we get the product of function as each exponent corresponds to the potential
choices for x, y, and z. It remains to find an explicit form for each coefficient of A(x).
It is known that

1

(1− x)2
= 1 + 2x+ 3x2 + ... =

∞∑
n=0

(n+ 1)xn.

Thus,

A(x) =

(
∞∑
n=0

(n+ 1)xn

)(
∞∑
n=0

x2n

)
(x4(1− x5)).

To find the xk coefficient of the product of the first two infinite sums, we can look at
each 2` with ` ≤ bk

2
c in the right sum. This implies the coefficient of xk is

b k
2
c∑

n=0

(k−2n+1) = (k+1)

(⌊
k

2

⌋
+ 1

)
−
⌊
k

2

⌋(⌊
k

2

⌋
+ 1

)
=

(⌊
k

2

⌋
+ 1

)(⌊
k + 1

2

⌋
+ 1

)
.

From here, the an can be evaluate as(⌊
n− 4

2

⌋
+ 1

)(⌊
n− 3

2

⌋
+ 1

)
−
(⌊

n− 9

2

⌋
+ 1

)(⌊
n− 8

2

⌋
+ 1

)
=

⌊
5

2
n

⌋
− 11.

This is the explicit form for the number of solutions when n > 5, as the last expression
will be negative when n ≤ 5. To cover the other cases, note that there is 1 solution
when n = 4, and 2 solutions when n = 5. This covers all general solutions. �

Problem 4 Let an be the number of compositions of n with an odd number of parts
such that every part is at least 3. Find an explicit formula (no summation signs allowed)
for the generating function of (an)n≥0.

Solution. Let bn be the sequence that represents partitioning n into odd parts and
cn be the sequence representing that each part is at least 3. Further, B(x) is the
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generating function for (bn)n≥0 and C(x) is the generating function for (cn)n≥0. From
the composition theorem, (an)n≥0 is simply B(C(x)). However, we know that

B(x) =
∑
k odd

xk =
x

1− x2

and

C(x) =
∞∑
n=3

xn =
x3

1− x
.

Therefore, it can be seen that

A(x) =
x3

1−x

1−
(

x3

1−x

)2 =
x3(1− x)

1− 2x+ x2 − x6
.

�

Problem 5 Let tn be the number of partitions of [n] into blocks of cardinality two.
Find the explicit formula (no summation signs allowed) for the exponential generating
function of (tn)n≥0.

Solution. Let an be the sequence corresponding to do nothing to an n element set, and
bn the sequence corresponding to taking a set of cardinality two. Clearly, an = 1 for all
n and bn = 0 at all points except for n = 2, where b2 = 1. This means the exponential
generating function for A(x) = (an)n≥0 is ex and the exponential generating function for

B(x) = (bn)n≥0 is x2

2
. The composition theorem tells us that (tn)n≥0 can be represented

as A(B(x)) = ex
2/2, which is the answer. �

Problem 6 Find an explicit formula (no summation signs allowed) for the exponen-
tial generating function of (D(n))n≥0, where D(0) = 1 and D(n) is the number of
derangements of Sn.

Solution. Recall from problem 1 that D(n) = nD(n− 1) + (−1)n. Let the exponential
generating function for (D(n))n≥0 be F (x). Then we see

F (x) =
∞∑
n=0

D(n)

n!
xn =

∞∑
n=0

nD(n− 1)

n!
xn +

∞∑
n=0

(−1)n

n!
xn

= x

∞∑
n=1

D(n− 1)

(n− 1)!
xn−1 +

∞∑
n=0

(−x)n

n!
= xF (x) + e−x.
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Thus, it can be deduced that

(1− x)F (x) = e−x =⇒ F (x) =
e−x

1− x
.

�

Problem 7 For each n ∈ N, let tn be the number of simple graphs with vertex set [n]
with no vertex of degree larger than 2, and assume that t0 = 1. Find an explicit formula
for the exponential generating function of (tn)n≥0.

Solution. We proposed the following lemma.

Lemma 8 If every vertex in a connected component has a degree at most 2, then this
connected component is either of the form Cn or Pn. (Cn is a cycle on n vertices that
looks like a polygon, and Pn is a chain of n vertices with the two endpoints having
degree 1 and the rest having degree 2)

Proof of Lemma. We prove the lemma via induction. First assume that there exists
a vertex of degree 1, and we claim that the only possible graph is Pn. The base case
is clearly true for n = 1 and n = 2. Now assume the inductive hypothesis is true for
some k = n. Then, if there is a graph on k+ 1 vertices where some vertex v has degree
1, say G, then the graph G′ = G\{v} is a graph on k vertices, and the vertex adjacent
to v must have degree either 1 or 0 in the graph G′. If it were 0, then the connect
component would make P2. Otherwise, we can use the inductive hypothesis to see that
the graph G′ = Pk, meaning that G = Pk+1. This proves the inductive hypothesis.

Otherwise, every vertex has degree 2. This means the sum of all degrees are 2n,
meaning that there are n edges and thus this graph can’t be a tree. Then we know
there exists a cycle in the graph, and further if any of the vertices in this cycle are
connected to a vertex outside the cycle, then the degree of that vertex would be greater
than 2. Therefore, every vertex in our graph must be apart of the same cycle, showing
that it is Cn. Thus, the lemma follows.

Using the lemma, we can find the exponential generating function. The first thing
we know is that there are (n−1)!

2
different possible graphs for Cn and n!

2
different possible

graphs for Pn. Let sn be the number of simple vertex sets in [n] subject to the problem

conditions given a single connected component. Thus, sn = (n−1)!+n!
2

for n ≥ 3. If
n = 2, then sn = 1 since there is no 2-cycle and also if n = 1, then sn = 1. Now let
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F (x) be the generating function for (sn)n≥0. Therefore

F (x) = x+
x2

2
+
∞∑
n=3

(n− 1)! + n!

2 · n!
xn

= x+
x2

2
+
∞∑
n=3

(
1

2
+

1

2n

)
xn

= −x
2

4
+
∞∑
n=1

(
1

2
+

1

2n

)
xn.

We can then compute each part of the sum. It is known that

∞∑
n=1

xn

2
=

x

2(1− x)

and that
∞∑
n=1

xn

2n
=

1

2

∞∑
n=1

xn

n
=

1

2
ln

(
1

1− x

)
.

The last equality comes from the integral of 1
1−x .

The only consideration left is that there can be multiple connected components.
In this case, the exponential generating function to do nothing with n connected com-
ponents is G(x), which is simply ex. Therefore, from the composition theorem, the
generating function for (tn)n≥0 is B(A(x)) which is equal to

e−
x2

4
+ x

2−2x
−ln(

√
1−x) =

e−
x2

4
+ x

2−2x

√
1− x

.

�

Problem 9 Using generating functions, prove that the number of partitions of n into
distinct parts equals the number of partitions of n where each part is odd.

Solution. Let an be the number of partitions of n into distinct parts and suppose
A(x) =

∑∞
i=0 aix

i is the generating function for an. As an integer may appear at most
once in a partition of n, A(x) must be composed of only factors in the form (1 + xk)
for all positive integers k. Therefore,

A(x) =
∞∏
k=1

(1 + xk) =
∞∏
k=1

1− x2k

1− xk
=
∏
k odd

1

1− xk
.
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However, the last product may be represented as∏
k odd

(1 + xk + x2k + · · · ).

This representations tells us that we can make partitions out of any number of odd
integers, where the term xak represents using k a total of a times in the partitions. This
means that A(x) is the generating function for the number of partitions into distinct
parts in addition to the number of partitions into odd parts, implying they are equal.

�


